11 resultados para Antimicrobial resistance

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

From 1 January to 31 December 2011, 29 institutions around Australia participated in the Australian Enterococcal Sepsis Outcome Programme (AESOP). The aim of AESOP 2011 was to determine the proportion of enterococcal bacteraemia isolates in Australia that are antimicrobial resistant, with particular emphasis on susceptibility to ampicillin and the glycopeptides, and to characterise the molecular epidemiology of the Enterococcus faecalis and E. faecium isolates. Of the 1,079 unique episodes of bacteraemia investigated, 95.8% were caused by either E. faecalis (61.0%) or E. faecium (34.8%). Ampicillin resistance was detected in 90.4% of E. faecium but not detected in E. faecalis. Using Clinical and Laboratory Standards Institute breakpoints (CLSI), vancomycin non-susceptibility was reported in 0.6% and 31.4% of E. faecalis and E. faecium respectively and was predominately due to the acquisition of the vanB operon. Approximately 1 in 6 vanB E. faecium isolates however, had an minimum inhibitory concentration at or below the CLSI vancomycin susceptible breakpoint of ≤ 4 mg/L. Overall, 37% of E. faecium harboured vanA or vanB genes. Although molecular typing identified 126 E. faecalis pulsed-field gel electrophoresis (PFGE) pulsotypes, more than 50% belonged to 2 pulsotypes that were isolated across Australia. E. faecium consisted of 73 PFGE pulsotypes from which 43 multilocus sequence types were identified. Almost 90% of the E. faecium were identified as clonal complex 17 clones, of which approximately half were characterised as sequence type 203, which was isolated Australia-wide. In conclusion, the AESOP 2011 has shown that although polyclonal, enterococcal bacteraemias in Australia are frequently caused by ampicillin-resistant vanB E. faecium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From 1 January to 31 December 2013, 26 institutions around Australia participated in the Australian Enterococcal Sepsis Outcome Programme (AESOP). The aim of AESOP 2013 was to determine the proportion of enterococcal bacteraemia isolates in Australia that are antimicrobial resistant, and to characterise the molecular epidemiology of the Enterococcus faecium isolates. Of the 826 unique episodes of bacteraemia investigated, 94.6% were caused by either E. faecalis (56.1%) or E. faecium (38.5%). Ampicillin resistance was not detected in E. faecalis but was detected in over 90% of E. faecium. Vancomycin non-susceptibility was reported in 0.2% and 40.9% of E. faecalis and E. faecium respectively and was predominately due to the acquisition of the vanB operon. Overall, 41.6% of E. faecium harboured vanA or vanB genes. The percentage of E. faecium bacteraemia isolates resistant to vancomycin in Australia is significantly higher than that seen in most European countries. E. faecium isolates consisted of 81 pulsed-field gel electrophoresis pulsotypes of which 72.3% were classified into 14 major pulsotypes containing five or more isolates. Multilocus sequence typing grouped the 14 major pulsotypes into clonal cluster 17, a major hospital-adapted polyclonal E. faecium cluster. Of the 2 predominant sequence types, ST203 (80 isolates) was identified across Australia and ST555 (40 isolates) was isolated primarily in the western and central regions (Northern Territory, South Australia and Western Australia) respectively. In conclusion, the AESOP 2013 has shown enterococcal bacteraemias in Australia are frequently caused by polyclonal ampicillin-resistant high-level gentamicin resistant vanB E. faecium, which have limited treatment options.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The clonal composition of Escherichia coli causing extra-intestinal infections includes ST131 and other common uropathogenic clones. Drivers for the spread of these clones and risks for their acquisition have been difficult to define. In this study, molecular epidemiology was combined with clinical data from 182 patients enrolled in a case-control study of community-onset expanded-spectrum cephalosporin-resistant E. coli (ESC-R-EC) in Australia and New Zealand. Genetic analysis included antimicrobial resistance mechanisms, clonality by DiversiLab (rep-PCR) and multilocus sequence typing (MLST), and subtyping of ST131 by identification of polymorphisms in the fimH gene. The clonal composition of expanded-spectrum cephalosporin-susceptible E. coli and ESC-R-EC isolates differed, with six MLST clusters amongst susceptible isolates (median 7 isolates/cluster) and three clusters amongst resistant isolates, including 40 (45%) ST131 isolates. Population estimates indicate that ST131 comprises 8% of all E. coli within our population; the fluoroquinolone-susceptible H41 subclone comprised 4.5% and the H30 subclone comprised 3.5%. The H30 subclone comprised 39% of all ESC-R-EC and 41% of all fluoroquinolone-resistant E. coli within our population. Patients with ST131 were also more likely than those with non-ST131 isolates to present with an upper than lower urinary tract infection (RR=1.8, 95% CI 1.01-3.1). ST131 and the H30 subclone were predominant amongst ESC-R-EC but were infrequent amongst susceptible isolates where the H41 subclone was more prevalent. Within our population, the proportional contribution of ST131 to fluoroquinolone resistance is comparable with that of other regions. In contrast, the overall burden of ST131 is low by global standards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In 2002−03 a retrospective audit of the use of surgical antimicrobial prophylaxis (AMP) for elective nasal surgery was undertaken at the Royal Victorian Eye and Ear Hospital (RVEEH). The RVEEH is a publicly funded teaching hospital that provides specialist eye, nose and throat medicine in Victoria, Australia. The aim of the audit was to determine the extent to which the use of antimicrobial prophylaxis in the hospital was consistent with Australian and international evidence-based guidelines and if there was a need for the hospital to develop internal guidelines for the use of AMP.

Methods: The histories of 500 consecutive patients who had undergone nasal surgery within the study period of August 2001 and July 2002 were examined. The data collected from these histories included information such as the patients' age, gender, diagnosis, surgical procedure performed, antimicrobial agents used, and the length of follow up and a range of factors shown in previous studies to increase the risk of surgical site infection.

Results: A total of 306 (72.86%) patients were found to have received antimicrobial agents either prior to admission, during admission or on discharge. Only 24 patients (5.71%) were administered antimicrobials immediately prior to surgery and at no other time.

Conclusions: The findings of this study support the need for further research to examine the appropriateness of the use of AMP at the RVEEH and the need for internal guidelines for its use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human contains 49 ATP-binding cassette (ABC) transporter genes and the multidrug resistance associated proteins (MRP1/ABCC1, MRP2/ABCC2, MRP3/ABCC3, MRP4/ABCC4, MRP5/ABCC5, MRP6/ABCC6, MRP7/ABCC10, MRP8/ABCC11 and MRP9/ABCC12) belong to the ABCC family which contains 13 members. ABCC7 is cystic fibrosis transmembrane conductance regulator; ABCC8 and ABCC9 are the sulfonylurea receptors which constitute the ATP-sensing subunits of a complex potassium channel. MRP10/ABCC13 is clearly a pseudo-gene which encodes a truncated protein that is highly expressed in fetal human liver with the highest similarity to MRP2/ABCC2 but without transporting activity. These transporters are localized to the apical and/or basolateral membrane of the hepatocytes, enterocytes, renal proximal tubule cells and endothelial cells of the blood-brain barrier. MRP/ABCC members transport a structurally diverse array of important endogenous substances and xenobiotics and their metabolites (in particular conjugates) with different substrate specificity and transport kinetics. The human MRP/ABCC transporters except MRP9/ABCC12 are all able to transport organic anions, such as drugs conjugated to glutathione, sulphate or glucuronate. In addition, selected MRP/ABCC members may transport a variety of endogenous compounds, such as leukotriene C(4) (LTC(4) by MRP1/ABCC1), bilirubin glucuronides (MRP2/ABCC2, and MRP3/ABCC3), prostaglandins E1 and E2 (MRP4/ABCC4), cGMP (MRP4/ABCC4, MRP5/ABCC5, and MRP8/ABCC11), and several glucuronosyl-, or sulfatidyl steroids. In vitro, the MRP/ABCC transporters can collectively confer resistance to natural product anticancer drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and in concert with alterations in phase II conjugating or biosynthetic enzymes, classical alkylating agents, alkylating agents. Several MRP/ABCC members (MRPs 1-3) are associated with tumor resistance which is often caused by an increased efflux and decreased intracellular accumulation of natural product anticancer drugs and other anticancer agents. Drug targeting of these transporters to overcome MRP/ABCC-mediated multidrug resistance may play a role in cancer chemotherapy. Most MRP/ABCC transporters are subject to inhibition by a variety of compounds. Based on currently available preclinical and limited clinical data, it can be expected that modulation of MRP members may represent a useful approach in the management of anticancer and antimicrobial drug resistance and possibly of inflammatory diseases and other diseases. A better understanding of their substrates and inhibitors has important implications in development of drugs for treatment of cancer and inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidrug ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1) and multidrug resistance protein 1 (MRP1/ABCC1) play an important role in the extrusion of drugs from the cell and their overexpression can be a cause of failure of anticancer and antimicrobial chemotherapy. Recently, the mouse P-gp/Abcb1a structure has been determined and this has significantly enhanced our understanding of the structure-activity relationship (SAR) of mammalian ABC transporters. This paper highlights our current knowledge on the structural and functional properties and the SAR of human MRP1/ABCC1. Although the crystal structure of MRP1/ABCC1 has yet to be resolved, the current topological model of MRP1/ABCC1 contains two transmembrane domains (TMD1 and TMD2) each followed by a nucleotide binding domain (NBD) plus a third NH2-terminal TMD0. MRP1/ABCC1 is expressed in the liver, kidney, intestine, brain and other tissues. MRP1/ABCC1 transports a structurally diverse array of important endogenous substances (e.g. leukotrienes and estrogen conjugates) and xenobiotics and their metabolites, including various conjugates, anticancer drugs, heavy metals, organic anions and lipids. Cells that highly express MRP1/ABCC1 confer resistance to a variety of natural product anticancer drugs such as vinca alkaloids (e.g. vincristine), anthracyclines (e.g. etoposide) and epipodophyllotoxins (e.g. doxorubicin and mitoxantrone). MRP1/ABCC1 is associated with tumor resistance which is often caused by an increased efflux and decreased intracellular accumulation of natural product anticancer drugs and other anticancer agents. However, most compounds that efficiently reverse P-gp/ABCB1-mediated multidrug resistance have only low affinity for MRP1/ABCC1 and there are only a few effective and relatively specific MRP1/ABCC1 inhibitors available. A number of site-directed mutagenesis studies, biophysical and photolabeling studies, SAR and QSAR, molecular docking and homology modeling studies have documented the role of multiple residues in determining the substrate specificity and inhibitor selectivity of MRP1/ABCC1. Most of these residues are located in the TMs of TMD1 and TMD2, in particular TMs 4, 6, 7, 8, 10, 11, 14, 16, and 17, or in close proximity to the membrane/cytosol interface of MRP1/ABCC1. The exact transporting mechanism of MRP1/ABCC1 is unclear. MRP1/ABCC1 and other multidrug transporters are front-line mediators of drug resistance in cancers and represent important therapeutic targets in future chemotherapy. The crystal structure of human MRP1/ABCC1 is expected to be resolved in the near future and this will provide an insight into the SAR of MRP1/ABCC1 and allow for rational design of anticancer drugs and potent and selective MRP1/ABCC1 inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data from 4727 invasive isolates of Streptococcus pneumoniae submitted to the Scottish Haemophilus, Legionella, Meningococcus and Pneumococcus Reference Laboratory between 1999 and 2007 were analysed to establish susceptibility profiles to penicillin, erythromycin and cefotaxime. Pneumococcal resistance to penicillin over the study period remained low, with only 0.2 % (n=7/4727) of isolates falling into this category (MIC ≥2 mg l−1). These isolates have been sporadic, and have mainly represented serogroup 14 (ST9) and 9 (ST156). In comparison, the ‘intermediate sensitivity’ group (MIC 0.12–1 mg l−1) ranged between 2 and 6 % per year, the majority from serogroup 9 (ST156). Over the study period, we found that 12 % (n=585/4727) of isolates were erythromycin-resistant (MIC >0.5 mg l−1), with the majority (n=467; 80 %) of these isolates identified as serogroup 14 (ST9). Cephalosporin resistance (cefotaxime MIC >1 mg l−1) was found in only 0.06 % (n=2/3135) of isolates. Internationally recognized clones (Pneumococcal Molecular Epidemiology Network) accounted for 35 % (n=28/81) of the penicillin non-susceptible isolates and 75 % (n=248/330) of the macrolide-resistant isolates, with ST9 and ST306 predominating. Between 1999 and 2007 we found that 11.6 % (n=18/155) of the penicillin non-susceptible isolates and 4.8 % (n=28/585) of the macrolide-resistant isolates were from serogroups not covered by the 7-valent conjugate pneumococcal vaccine in use in the UK since 2006. Susceptibility to first-line antimicrobial agents for invasive pneumococcal disease in Scotland remained high over the period 1999–2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we report a novel acrylamide copolymer with antimicrobial property as an enhanced oil recovery chemical. The copolymer was synthesized from acrylamide (AM), acrylic acid (AA) and 2-((2-(acryloyloxy)ethyl)dimethylammonio)ethyl sulfite (ADMES) using oxidation-reduction initiation system. Subsequently, the copolymer AM/AA/ADMES was evaluated and characterized on several aspects such as IR, 1H NMR, intrinsic viscosity, and dissolubility. The AM/AA/ADMES solution exerted remarkable thickening ability, salt tolerance ability and viscoelasticity. In addition, the rheological properties, temperature resistance ability and long-term stability of AM/AA/ADMES were investigated systematically in the presence of sulfate-reducing bacteria and relatively low viscosity loss could be obtained compared to partially hydrolyzed polyacrylamide. On the basis of core flooding experiments, AM/AA/ADMES was found to be a valuable prospect with 10.5 resistance factor, 4.6 residual resistance factor and up to 11.0% enhanced oil recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eucalyptus is a fast growing tree which has shown to possess high degree of resistance against stressed environmental conditions. Eucalyptus tereticornis is widely cultivated in various parts of the world even in Pakistan. The medicinal properties of this tree reside in its oil. The main aim of our study is to check the antimicrobial activity of this valuable tree and to compare it with commercially available antibiotics. Eucalyptus tereticornis oil was extracted from the fresh leaves and branch tips during flowering season from surrounding areas of Hazara University, Pakistan. Different concentrations of oil were checked against Gram positive bacteria Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 49452), Gram negative bacteria including Escherichia coli (ATCC 25922), Salmonella typhimurium (ATCC 14028) and Pseudomonas aeruginosa (ATCC 27853), and also against yeast Candiada albican (ATCC 2091). The oil was significantly active against all the microbes studied. The activity of E. tereticornis oil was compared with standard antibiotics Ciprofloxacin (CIP-5 μg), Chloramphenicol (C-30 μg), Tetracycline (TE-30 μg) and Ampicillin (AMP 25-μg). The comparison gives the significant results and proves the antimicrobial efficiency of this valuable plant.